詳細介紹
微生物污水處理設備
微生物污水處理設備適用于:光伏電站、變電站、農村、美麗鄉村建設、廠區、員工宿舍、各種大小醫院、各種洗滌污水、餐飲污水、屠宰污水、養殖污水、噴涂污水、景區、服務區、度假區、收費站、加油站等。
一體化設備可用于處理的水量:1-4000噸。
水解(酸化)工藝屬于升流式厭氧污泥床反應器的改進型,適用于處理低濃度的城市污水,它的水力停留時間為3~4小時,能在常溫下正常運行,不產生沼氣,流程簡化,并在基本不需要能耗的條件下對有機物進行降解,降低了造價和運行費用。
水解池內分污泥床區和清水層區,待處理污水以及濾池反沖洗時脫落的剩余微生物膜由反應器底部進入池內,并通過帶反射板的布水器與污泥床快速而均勻地混合。污泥床較厚,類似于過濾層,從而將進水中的顆粒物質與膠體物質迅速截留和吸附。
由于污泥床內含有高濃度的兼性微生物,在池內缺氧條件下,被截留下來的有機物質在大量水解—產酸菌的作用下,將不溶性有機物水解為溶解性物質,將大分子、難于生物降解的物質轉化為易于生物降解的物質(如有機酸類)。經過水解后的污水的可生化性進一步提高,通過清水區排出池外進入后續好氧系統進一步處理。由于上述原因以及水解酸化的污泥齡較長,所以在污水處理的同時,污泥得以穩定減容。在水解酸化池中,主要以兼性微生物為主,另含有部分甲烷菌。
水解酸化池中COD的降低,主要是由于微生物的生長過程中吸收有機污染物作為營養物質,以及大分子物質降解為有機酸過程中產生二氧化碳,同時還包括硫酸鹽的還原、氫氣的產生及少量的甲烷化過程等。
總之,水解(酸化)工藝具有以下特點:
1)在城市污水處理中,多功能的水解(酸化)池較功能專一的傳統初沉池對各類有機物的去除效率高,節能降耗。
以多功能的水解池取代功能專一的初沉池,水解(酸化)池對各類有機物的去除率遠遠高于傳統的初沉池,其COD、BOD、SS去除率分別達到25-30%、15-25%、65-70%,從數量上降低了對后續處理構筑物的負荷。水解池用較短的時間和較低的能耗完成了部分有機污染物的凈化過程,使該組合工藝較常規工藝節能20%~30%。
2)污泥相對穩定
水解(酸化)—曝氣生物濾池工藝較常規工藝污泥量減少了15~30%,整個工藝的剩余污泥終從水解酸化池排出。由于采用缺氧處理技術,在處理水的同時,也完成了對部分污泥的減容處理,簡化了傳統處理工藝流程,同時水解(酸化)池內污泥穩定,容易處理與處置。
3)基建費用低,運轉管理方便
水解(酸化)工藝基建費用較常規初沉池基建費用低,且不需要大量的水下設備維護,處理效果穩定,管理方便。
水解酸化生物處理工藝出現于20世紀80年代。該工藝不具有厭氧消化過程中對環境條件嚴格要求,及降解速度較慢的甲烷發酵階段,將系統控制在缺氧狀態下的水解酸化階段。其原理是通過水解菌、產酸菌釋放的酶促使水中難以生物降解的大分子物質發生生物催化反應,具體表現為斷鏈和水溶,微生物則利用水溶性底物完成胞內生化反應,同時排出各種有機酸。
水解酸化過程能將廢水中的非溶解態有機物截留并逐步轉變為溶解態有機物,一些難于生物降解大分子物質被轉化為易于降解的小分子物質如有機酸等,從而使廢水的可生化性和降解速度大幅度提高,以利于后續好氧生物處理。因此,后續的好氧生物處理可在較短的水力停留時間內達到較高的COD去除率。
⑴水解池的啟動通過調整水力停留時間利用水解、產酸與甲烷菌生長速度的不同。利用水的流動造成甲烷菌在反應器中難于繁殖的條件。省去了氣體回收部分。
⑵具有較好的抗有機負荷沖擊能力。⑶水解過程可改變污水中有機物形態及性質有利于后續好氧處理。水解、產酸階段的產物主要為小分子的有機物,可生物降解性一般較好。因此水解池可以改變原污水的可生化性,從而減少反應時間和處理的能耗。
⑷對固體有機物的降解可減少污泥量,其功能于消化池一樣。工藝僅產生很少的難厭氧降解的剩余污泥,故能實現污水、污泥同時處理,不需要經常加熱的中溫消化池。
⑸池子不需要密閉,不需要攪拌器,不需要水、氣、固三相分離器,降低了造價和便于維護。
⑹由于反應控制在第二階段完成前,出水無厭氧發酵的不良氣味。
空床接觸時間(EBCT)
EBCT同濾速、水力負荷、水頭損失呈負相關關系,是影響生物活性濾池去除率的一個很重要的因素。在適宜的EBCT內,生物濾池對有機物的去除效率是隨著EBCT的增加而提高的,Sontheimer等人研究表明,EBCT是影響DOC(溶解性有機碳)去除串的很重要因素:當EBCT從5min增加至20min,相應的DOC去除率從21%增加至41%。
不同有機物的去除對EBCT的要求也不同,易生物降解的有機物的去除受EBCT的影響較小(如臭氧氧化副產物OBPs),慢速降解有機物的去除受EBCT的影響較大(如加氯消毒副產物前體物)。Prevost等人的研究表明,生物活性濾池2rain內可去除62%—90%的AOC,90%以上的BDOC(可生物降解溶解性有機碳)則須在10—20min之內去除。
過大的EBCT會使微生物的營養供給不足,導致微生物進行內源呼吸,生物膜更易于老化剝落。運行較好的生物活性濾池EBCT的設計標準一般為15min-20min。
反沖洗
濾池中吸附截留的顆粒物和絮體會對濾池去除效率產生影響,積泥易使濾池堵塞,所以生物活性濾池要定期進行反沖洗。
反沖洗對生物濾池的影響主要是指對生物膜的影響。用不加氯水反沖洗對生物膜量有無影響目前存在爭議。根據筆者的試驗研究,不加氯水反沖洗對生物膜總量是有一定影響的(通過磷脂分析法測定)。可能是老化的生物膜剝落所致,由此可見,反沖洗可以促使生物膜更新。因此,應該控制反沖洗的強度和頻率,使其既能沖去積泥,又能讓生物膜保持良好的活性,還必須保證有一定數量的硝化菌以維持濾池對氨氮的去除作用。氣—水反沖洗通常可以達到較好的沖洗效果。