日韩亚洲情Av无码,日韩亚洲AV无码精品影院,日韩人妻系列无码专区久久,亚洲无码日韩高清中文字幕

江蘇安科瑞電器制造有限公司
中級會員 | 第5年

18761509873

系統解決方案
馬達保護與監控系統 碳資產管理平臺 變電站綜合自動化系統 企業微電網能效管理系統 EIOT物聯網云平臺 電能管理系統 配電室環境監控系統 船舶岸電收費運營云平臺 企業能源管控平臺 重點用能單位能耗在線監測系統 建筑能耗監測系統 數據中心基礎設施監控管理系統 電能質量分析與治理系統 IT配電監測系統 微電網能量管理控制系統 變電站監控管理系統 充電樁收費運營云平臺 電瓶車充電樁收費云平臺 公交站安全用電云平臺 基站智慧用電管理云平臺 路燈安全用電云平臺 智慧消防云平臺 銀行業安全用電云平臺 安全用電管理云平臺 遠程預付費管控系統 環保用電監管云平臺 電力監控系統 變電所運維云平臺
電力監控與保護
電能管理
數據中心/鐵塔基站
電氣安全
新能源
智能網關
電能質量治理
電量傳感器
數采儀
智能照明

淺談分布式光伏系統在某鐵路車站的設計與應用

時間:2025/2/25閱讀:178
分享:

安科瑞 宣依依

  摘要:光伏發電技術也被稱為太陽能發電技術,是一種利用太陽輻射轉化為電能的技術。隨著人們對可再生能源需求的增加,光伏發電技術得到了廣泛應用和發展。文章以某鐵路車站分布式光伏系統設計為例,依托CandelaRoof仿真軟件,從太陽能資源分析、用電負荷預測、自發自用比例等多個方面對設計中的關鍵環節進行分析,提出了一種分布式光伏發電系統裝機容量的估算方法,并通過仿真驗證了方法的可行性,為工程設計提供參考。

  關鍵詞:鐵路供電;分布式光伏系統;用電負荷預測

  0引言

  隨著全球能源緊缺問題的進一步加劇,可再生能源的發展和利用越來越受到關注。可再生能源是指不會枯竭的能源,包括太陽能、風能、水能、地熱能等。這些能源的利用可以減少對化石燃料的依賴,降低環境污染,提高能源安全性。因此,研究和開發可再生能源對于促進全球可持續發展具有重要意義[1]。

  光伏發電技術基本原理是利用半導體材料的光電效應,將太陽光能轉化為電能。光伏發電系統由太陽能電池板、蓄電池、控制器和逆變器等組成,其中太陽能電池板是其核心部件。近年來,光伏發電技術在技術研發、市場規模、成本效益等方面都取得了顯著進展[2]。光伏發電技術的研發不斷推進,太陽能電池板的效率不斷提高。例如,PERC、N-TypeTOPCON、HJT等新型電池技術不斷涌現,使太陽能電池板的轉換效率不斷提高,一些*家和地區成為主流的能源供應方式,加之我國提出“碳中和、碳達峰"目標,國內各地為推廣綠色能源均有不同程度的優惠政策和補貼,進一步促進了國內光伏發電系統的發展。從目前的發展趨勢來看,光伏發電仍會是未來數十年內的熱門話題[3]。

  在實際的工程設計中,已建成的鐵路車站有較好的增設光伏系統的條件,相較于普通建筑,應用于鐵路車站的光伏發電系統具有以下特點:

  (1)建筑面積充足。車站擁有較多的大面積建筑物,如站房、辦公綜合樓、軌道車庫以及站臺雨棚等,屋面大多較為平整,承載力良好,屋面可利用率高,可有效減少光伏發電系統占用的空間資源。

  (2)消納能力高。車站具有平穩運行特性的動力負荷較多,典型負荷有通信、信號、信息設備,機房*用空調等。動力負荷用電量大且運行穩定,使光伏發電系統具有較高的消納能力,為工程帶來可觀的經濟效益[4]。

  (3)供電系統構架。鐵路供電系統,除車站設置配電所為本車站的負荷供電外,為保障重要負荷的用電可靠性,各相鄰配電所間設置一回或兩回高壓電力貫通線,可為區間負荷供電,還可實現電源故障時的越區供電[5]。鐵路沿線區間用電負荷較多,主要有通信基站、信號中繼站、電氣化所、公安警務區及崗亭等。以通信基站為例,每3km有一處。由于區間負荷由相鄰車站配電所之間連通的10kV電力貫通線供電,當車站設置的光伏發電系統有多余電量時,可通過10kV電力貫通線為區間負荷供電,這種供電系統構架進一步提升了光伏系統的消納能力。

  文章以陜西省境內某鐵路車站分布式光伏發電系統設計為例,針對以上設計中的關鍵問題進行分析,首先根據車站所在地的經緯度確定了系統的日照資源;然后結合車站用電情況提出了光伏陣列裝機容量的估算算法并通過CandelaRoof仿真軟件對光伏發電系統進行建模仿真;*后通過軟件測算系統的自發自用比例驗證了系統裝機容量估算的準確性,以此說明文章提出的估算算法在項目前期設計階段中的指導意義。

  1太陽能資源分析

  Meteonorm是由瑞士MeteotestAG公司開發的太陽能評估和規劃交互式工具,根據該工具提供的氣象數據,車站所在地平均年水平面總輻射量值為1241.7kW·h/m2,其中水平散射輻射量值為780.5kW·h/m2,月平均總輻射日輻照量*低值與*高值的比值為0.38,年水平面散射輻照量與水平面直接輻照量比值(即直射比DHRR)為0.37[6]。根據《太陽能資源等級總輻射》(GB/T31155—2014)中相關規定,此地太陽能資源屬于“C級"豐富地區,穩定度屬于“B級"穩定地區,并且太陽能直射比等級為“中級",具有較好的太陽能資源利用條件。

  2車站用電量分析

  對既有車站的用電量分析是計算光伏發電系統裝機容量、消納率及經濟評價等一系列數據的依據。若要*確地分析用電量,則需要車站至少1a的日負荷曲線。一般而言,日負荷曲線難以收集,因此目前常用的計算方法是根據供電公司的電費繳納單,對近一年的負荷用電情況進行分析。

  車站設容量為630kV·A箱式變電站1座,為站內負荷供電。根據*近1a的電費繳納情況,車站在尖峰、高峰、平段及低谷時段的用電情況如表1所示。

  表1數據表明,車站近1a的用電總量為395000kW·h,平均日用電量為1082.19kW·h,且車站用電量*大的時間段為高峰段及平段,涵蓋光伏發電系統的幾乎全部發電時間段,可有效地利用光伏系統的發電量。

  表1車站各月份分時段用電量

  單位:(kW·h)/月

  注:1月及12月尖峰時段為18:30—20:30,7月及8月的尖峰時段為19:30—21:30,高峰時段為8:00—11:30、18:30—23:00;平時段為7:00—8:00、11:30—18:30。

  3光伏系統裝機容量估算

  光伏發電時間按9:00—15:00考慮,其中包含2.5h的高峰段用電及3.5h的平段用電。車站高峰段年用電量為142242.4kW·h,平段年用電量為133438.0kW·h,對用電量及時長進行加權平均,則光伏發電時間段內(共計6h)車站用電量為102829.88kW·h。

  式中:WT為光伏日發電總量,kW·h;W高峰為光伏高峰時段發電總量,kW·h;W平段為光伏平時段發電總量,kW·h。

  由式(1)可得光伏發電時間段內平均日用電量合計281.7kW·h,查詢氣象數據,當地平均峰值日照小時數為3.4h,則裝機容量估算為82.9kWp。

  式中:P裝機為光伏系統裝機容量,kWp;T為峰值日照時間,h。

  4基于CandelaRoof軟件的光伏發電系統建模

  根據車站建筑情況及光伏系統裝機容量估算,光伏組件選用LR5-72HPH-550M,采用豎向2塊布置方式,系統模型主要基本參數如表2所示。

  表2系統模型主要基本參數

  式(2)計算的裝機容量為估算值,由于平均日照小時數每月數值均不一樣,且車站用電負荷有季節特性,因此需要建立每個月負荷用電量與光伏系統發電量之間的聯系,才能*確計算系統的電量自用比例。為驗證式(2)提出的估算方法的有效性,利用軟件中自發自用測算模塊對上述模型進行進一步分析和優化。將表1中車站的全年用電數據導入CandelaRoof軟件中,根據光伏系統發電量及月負荷用電量,自發自用比例仿真計算結果如表3所示。

  表3系統自發自用比例仿真計算結果

  挑選3月典型日,系統出力曲線及日負荷曲線如圖1所示。

圖13月典型日系統出力曲線及日負荷曲線

  由圖1可知,系統出力曲線位于日負荷曲線下方,即該典型日光伏自發自用比例為100%。

  綜上所述,基于式(2)的光伏系統裝機容量估算與實際仿真結果*為接近,可作為工程設計前期裝機容量的估算方法。

  5Acrel-2000MG充電站微電網能量管理系統

  5.1平臺概述

  Acrel-2000MG微電網能量管理系統,是我司根據新型電力系統下微電網監控系統與微電網能量管理系統的要求,總結國內外的研究和生產的*進經驗,專門研制出的企業微電網能量管理系統。本系統滿足光伏系統、風力發電、儲能系統以及充電站的接入,*進行數據采集分析,直接監視光伏、風能、儲能系統、充電站運行狀態及健康狀況,是一個集監控系統、能量管理為一體的管理系統。該系統在安全穩定的基礎上以經濟優化運行為目標,促進可再生能源應用,提高電網運行穩定性、補償負荷波動;有效實現用戶側的需求管理、消除晝夜峰谷差、平滑負荷,提高電力設備運行效率、降低供電成本。為企業微電網能量管理提供安全、可靠、經濟運行提供了全新的解決方案。

  微電網能量管理系統應采用分層分布式結構,整個能量管理系統在物理上分為三個層:設備層、網絡通信層和站控層。站級通信網絡采用標準以太網及TCP/IP通信協議,物理媒介可以為光纖、網線、屏蔽雙絞線等。系統支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。

  5.2平臺適用場合

  系統可應用于城市、高速公路、工業園區、工商業區、居民區、智能建筑、海島、無電地區可再生能源系統監控和能量管理需求。

  5.3系統架構

  本平臺采用分層分布式結構進行設計,即站控層、網絡層和設備層,詳細拓撲結構如下:

圖1典型微電網能量管理系統組網方式

  6充電站微電網能量管理系統解決方案

  6.1實時監測

  微電網能量管理系統人機界面友好,應能夠以系統一次電氣圖的形式直觀顯示各電氣回路的運行狀態,實時監測光伏、風電、儲能、充電站等各回路電壓、電流、功率、功率因數等電參數信息,動態監視各回路斷路器、隔離開關等合、分閘狀態及有關故障、告警等信號。其中,各子系統回路電參量主要有:相電壓、線電壓、三相電流、有功/無功功率、視在功率、功率因數、頻率、有功/無功電度、頻率和正向有功電能累計值;狀態參數主要有:開關狀態、斷路器故障脫扣告警等。

  系統應可以對分布式電源、儲能系統進行發電管理,使管理人員實時掌握發電單元的出力信息、收益信息、儲能荷電狀態及發電單元與儲能單元運行功率設置等。

  系統應可以對儲能系統進行狀態管理,能夠根據儲能系統的荷電狀態進行及時告警,并支持定期的電池維護。

  微電網能量管理系統的監控系統界面包括系統主界面,包含微電網光伏、風電、儲能、充電站及總體負荷組成情況,包括收益信息、天氣信息、節能減排信息、功率信息、電量信息、電壓電流情況等。根據不同的需求,也可將充電,儲能及光伏系統信息進行顯示。

1669372711737

圖1系統主界面

  子界面主要包括系統主接線圖、光伏信息、風電信息、儲能信息、充電站信息、通訊狀況及一些統計列表等。

  6.1.1光伏界面

圖2光伏系統界面

  本界面用來展示對光伏系統信息,主要包括逆變器直流側、交流側運行狀態監測及報警、逆變器及電站發電量統計及分析、并網柜電力監測及發電量統計、電站發電量年有效利用小時數統計、發電收益統計、碳減排統計、輻照度/風力/環境溫濕度監測、發電功率模擬及效率分析;同時對系統的總功率、電壓電流及各個逆變器的運行數據進行展示。

  6.1.2儲能界面

圖3儲能系統界面

  本界面主要用來展示本系統的儲能裝機容量、儲能當前充放電量、收益、SOC變化曲線以及電量變化曲線。

圖4儲能系統PCS參數設置界面

  本界面主要用來展示對PCS的參數進行設置,包括開關機、運行模式、功率設定以及電壓、電流的限值。

圖5儲能系統BMS參數設置界面

  本界面用來展示對BMS的參數進行設置,主要包括電芯電壓、溫度保護限值、電池組電壓、電流、溫度限值等。

圖6儲能系統PCS電網側數據界面

  本界面用來展示對PCS電網側數據,主要包括相電壓、電流、功率、頻率、功率因數等。

圖7儲能系統PCS交流側數據界面

  本界面用來展示對PCS交流側數據,主要包括相電壓、電流、功率、頻率、功率因數、溫度值等。同時針對交流側的異常信息進行告警。

圖8儲能系統PCS直流側數據界面

  本界面用來展示對PCS直流側數據,主要包括電壓、電流、功率、電量等。同時針對直流側的異常信息進行告警。

圖9儲能系統PCS狀態界面

  本界面用來展示對PCS狀態信息,主要包括通訊狀態、運行狀態、STS運行狀態及STS故障告警等。

圖10儲能電池狀態界面

  本界面用來展示對BMS狀態信息,主要包括儲能電池的運行狀態、系統信息、數據信息以及告警信息等,同時展示當前儲能電池的SOC信息。

圖11儲能電池簇運行數據界面

  本界面用來展示對電池簇信息,主要包括儲能各模組的電芯電壓與溫度,并展示當前電芯的電壓、溫度值及所對應的位置。

  6.1.3風電界面

圖12風電系統界面

  本界面用來展示對風電系統信息,主要包括逆變控制一體機直流側、交流側運行狀態監測及報警、逆變器及電站發電量統計及分析、電站發電量年有效利用小時數統計、發電收益統計、碳減排統計、風速/風力/環境溫濕度監測、發電功率模擬及效率分析;同時對系統的總功率、電壓電流及各個逆變器的運行數據進行展示。

  6.1.4充電站界面

圖13充電站界面

  本界面用來展示對充電站系統信息,主要包括充電站用電總功率、交直流充電站的功率、電量、電量費用,變化曲線、各個充電站的運行數據等。

  6.1.5視頻監控界面

1666142781845

圖14微電網視頻監控界面

  本界面主要展示系統所接入的視頻畫面,且通過不同的配置,實現預覽、回放、管理與控制等。

  6.1.6發電預測

  系統應可以通過歷史發電數據、實測數據、未來天氣預測數據,對分布式發電進行短期、超短期發電功率預測,并展示合格率及誤差分析。根據功率預測可進行人工輸入或者自動生成發電計劃,便于用戶對該系統新能源發電的集中管控。

圖15光伏預測界面

  6.1.7策略配置

  系統應可以根據發電數據、儲能系統容量、負荷需求及分時電價信息,進行系統運行模式的設置及不同控制策略配置。如削峰填谷、周期計劃、需量控制、防逆流、有序充電、動態擴容等。

  具體策略根據項目實際情況(如儲能柜數量、負載功率、光伏系統能力等)進行接口適配和策略調整,同時支持定制化需求。

基礎參數

計劃曲線-一充一放

圖16策略配置界面

  6.1.8運行報表

  應能查詢各子系統、回路或設備*時間的運行參數,報表中顯示電參量信息應包括:各相電流、三相電壓、總功率因數、總有功功率、總無功功率、正向有功電能、尖峰平谷時段電量等。

圖17運行報表

  6.1.9實時報警

  應具有實時報警功能,系統能夠對各子系統中的逆變器、雙向變流器的啟動和關閉等遙信變位,及設備內部的保護動作或事故跳閘時應能發出告警,應能實時顯示告警事件或跳閘事件,包括保護事件名稱、保護動作時刻;并應能以彈窗、聲音、短信和電話等形式通知相關人員。

圖18實時告警

  6.1.10歷史事件查詢

  應能夠對遙信變位,保護動作、事故跳閘,以及電壓、電流、功率、功率因數、電芯溫度(鋰離子電池)、壓力(液流電池)、光照、風速、氣壓越限等事件記錄進行存儲和管理,方便用戶對系統事件和報警進行歷史追溯,查詢統計、事故分析。

1666142273322

圖19歷史事件查詢

  6.1.11電能質量監測

  應可以對整個微電網系統的電能質量包括穩態狀態和暫態狀態進行持續監測,使管理人員實時掌握供電系統電能質量情況,以便及時發現和消除供電不穩定因素。

  1)在供電系統主界面上應能實時顯示各電能質量監測點的監測裝置通信狀態、各監測點的A/B/C相電壓總畸變率、三相電壓不平衡度*和正序/負序/零序電壓值、三相電流不平衡度*和正序/負序/零序電流值;

  2)諧波分析功能:系統應能實時顯示A/B/C三相電壓總諧波畸變率、A/B/C三相電流總諧波畸變率、奇次諧波電壓總畸變率、奇次諧波電流總畸變率、偶次諧波電壓總畸變率、偶次諧波電流總畸變率;應能以柱狀圖展示2-63次諧波電壓含有率、2-63次諧波電壓含有率、0.5~63.5次間諧波電壓含有率、0.5~63.5次間諧波電流含有率;

  3)電壓波動與閃變:系統應能顯示A/B/C三相電壓波動值、A/B/C三相電壓短閃變值、A/B/C三相電壓長閃變值;應能提供A/B/C三相電壓波動曲線、短閃變曲線和長閃變曲線;應能顯示電壓偏差與頻率偏差;

  4)功率與電能計量:系統應能顯示A/B/C三相有功功率、無功功率和視在功率;應能顯示三相總有功功率、總無功功率、總視在功率和總功率因素;應能提供有功負荷曲線,包括日有功負荷曲線(折線型)和年有功負荷曲線(折線型);

  5)電壓暫態監測:在電能質量暫態事件如電壓暫升、電壓暫降、短時中斷發生時,系統應能產生告警,事件能以彈窗、閃爍、聲音、短信、電話等形式通知相關人員;系統應能查看相應暫態事件發生前后的波形。

  6)電能質量數據統計:系統應能顯示1min統計整2h存儲的統計數據,包括均值、*值、*值、95%概率值、方均根值。

  7)事件記錄查看功能:事件記錄應包含事件名稱、狀態(動作或返回)、波形號、越限值、故障持續時間、事件發生的時間。

圖20微電網系統電能質量界面

  6.1.12遙控功能

  應可以對整個微電網系統范圍內的設備進行遠程遙控操作。系統維護人員可以通過管理系統的主界面完成遙控操作,并遵循遙控預置、遙控返校、遙控執行的操作順序,可以及時執行調度系統或站內相應的操作命令。

圖21遙控功能

  6.1.13曲線查詢

  應可在曲線查詢界面,可以直接查看各電參量曲線,包括三相電流、三相電壓、有功功率、無功功率、功率因數、SOC、SOH、充放電量變化等曲線。

圖22曲線查詢

  6.1.14統計報表

  具備定時抄表匯總統計功能,用戶可以自由查詢自系統正常運行以來任意時間段內各配電節點的發電、用電、充放電情況,即該節點進線用電量與各分支回路消耗電量的統計分析報表。對微電網與外部系統間電能量交換進行統計分析;對系統運行的節能、收益等分析;具備對微電網供電可靠性分析,包括年停電時間、年停電次數等分析;具備對并網型微電網的并網點進行電能質量分析。

1666142457423

圖23統計報表

  6.1.15網絡拓撲圖

  系統支持實時監視接入系統的各設備的通信狀態,能夠完整的顯示整個系統網絡結構;可在線診斷設備通信狀態,發生網絡異常時能自動在界面上顯示故障設備或元件及其故障部位。

圖24微電網系統拓撲界面

  本界面主要展示微電網系統拓撲,包括系統的組成內容、電網連接方式、斷路器、表計等信息。

  6.1.16通信管理

  可以對整個微電網系統范圍內的設備通信情況進行管理、控制、數據的實時監測。系統維護人員可以通過管理系統的主程序右鍵打開通信管理程序,然后選擇通信控制啟動所有端口或某個端口,快速查看某設備的通信和數據情況。通信應支持ModbusRTU、ModbusTCP、CDT、IEC60870-5-101、IEC60870-5-103、IEC60870-5-104、MQTT等通信規約。

1666144457088

圖25通信管理

  6.1.17用戶權限管理

  應具備設置用戶權限管理功能。通過用戶權限管理能夠防止未經授權的操作(如遙控操作,運行參數修改等)。可以定義不同級別用戶的登錄名、密碼及操作權限,為系統運行、維護、管理提供可靠的安全保障。

7b0f4810af758213bc6c1e4dfad64b6

圖26用戶權限

  6.1.18故障錄波

  應可以在系統發生故障時,自動準確地記錄故障前、后過程的各相關電氣量的變化情況,通過對這些電氣量的分析、比較,對分析處理事故、判斷保護是否正確動作、提高電力系統安全運行水平有著重要作用。其中故障錄波共可記錄16條,每條錄波可觸發6段錄波,每次錄波可記錄故障前8個周波、故障后4個周波波形,總錄波時間共計46s。每個采樣點錄波至少包含12個模擬量、10個開關量波形。

圖27故障錄波

  6.1.19事故追憶

  可以自動記錄事故時刻前后一段時間的所有實時掃描數據,包括開關位置、保護動作狀態、遙測量等,形成事故分析的數據基礎。

  用戶可自定義事故追憶的啟動事件,當每個事件發生時,存儲事故10個掃描周期及事故后10個掃描周期的有關點數據。啟動事件和監視的數據點可由用戶隨意修改。

6.2硬件及其配套產品

image.pngimage.png

  7結束語

  鐵路車站分布式光伏發電設施的建設和維護成本相對較低,可以作為車站備用能源或補充能源,提高供電可靠性。鐵路車站建筑、車站負荷有其*有的特點,因此設計鐵路車站分布式光伏項目時應予以充分考慮。文章以某車站為例,對分布式光伏的設計流程進行了詳細的分析及闡述,圍繞車站既有負荷的用電數據,推導并提出一種光伏組件裝機容量計算方法,并通過仿真驗證了方法的準確性,對工程設計有著較好的指導意義。

  參考文獻

  [1]安東尼奧·盧克.光伏技術與工程手冊[M].北京:機械工業出版社,2011.

  [2]張連源.太陽能光伏發電技術現狀與發展探討[J].光源與照明,2021(7):60-61.

  [3]向萌.分布式光伏發電的現狀分析及技術改進研究[J].材料導報,2022(20):39-41.

  [4]王斯成.中國光伏發展簡史及基本現狀[J].太陽能,2018(19):17-22.

  [5]吳達成.太陽能光伏發電系統的設計及應用[M].北京:化學工業出版社,2016.

  [6]趙玉文.國內外太陽能光伏產業發展現狀與趨勢[J].太陽能,2019(12):6-11.

  [7]牛明哲,某鐵路車站分布式光伏系統設計分析

  [8]安科瑞企業微電網設計與應用手冊.2022年05版


會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言
主站蜘蛛池模板: 洪雅县| 临颍县| 黄大仙区| 慈利县| 渑池县| 赞皇县| 开阳县| 呼伦贝尔市| 建德市| 景东| 佛坪县| 乌拉特中旗| 福州市| 兰西县| 武清区| 东至县| 连平县| 昌江| 始兴县| 沂源县| 丹江口市| 长岭县| 新和县| 会昌县| 平塘县| 德安县| 阿荣旗| 宣汉县| 名山县| 邓州市| 炎陵县| 兴宁市| 辛集市| 军事| 林甸县| 格尔木市| 慈利县| 崇州市| 玉龙| 合作市| 奉化市|